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For the linearized Bottzmann equation with finite cross section, the solution 
is represented as an integral over the paths of a Markov jump process. The 
integral is only shown to converge conditionally, where the limiting process 
is defined by an increasing sequence of stopping times. The notion of local 
martingale plays an important role. A number of related kinetic models are 
also mentioned. 
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1. I N T R O D U C T I O N  

We cons ider  the  l inear ized  B o l t z m a n n  e q u a t i o n  

f t  + ~ ' f x  = v(~) fa [k(~:, ~7)f(t, x ,  ~7) - f ( t ,  x ,  se)]p(dT/) (1) 

where  p(d~) is a p robab i l i t y  measure ,  v(~:) > 0, a n d  k(~:, 7) is a kernel  o f  

a rb i t r a ry  sign. This  fo rm co r r e sponds  to a cutoff  ha rd  p o t e n t i a l J  1~ O u r  m a i n  
resul t  yields a r ep resen ta t ion  o f f :  

( ( j0 )) f ( t ,  x, ~:) = l im E~ m ( & ) f  t - &, x - ~(s) ds, ( (&) (2) 
n ~  oo 
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where {~(t), t /> 0} is a Markov  process determined by (v((), p(d~:)) and t, is 
an increasing sequence of  s topping times with tn = t for n sufficiently large; 
re(t) is a certain multiplicative functional of  {~(t), t ) 0}, determined by the 
kernel k. Formula  (2) with t, replaced by t may  not  be absolutely convergent.  
Thus,  we are led to the substitute (2). I f  Elm(t)] < oo a n d f i s  bounded,  then 
(2) reduces to the representat ion 

f(t, x, D = E~tm(t)f(O, x - fl ~(s)ds, ~(t)) ) (3) 

This follows f rom the known theory of  multiplicative opera tor  functionals. <2~ 
The main  tool in our  p roo f  is a product  differentiation formula  for  piece- 

wise differentiable processes which have simple discontinuities at the j u m p  
times of  {:(t). Together  with the not ion of  local martingale,  ~a~ we have the tools 
to prove  (2). 

2, A P P A R A T U S  FOR THE PROOF 

We let R denote Euclidean space of  any dimension. Let p(d~) be a proba-  
bility measure on R and v(~:) a real Borel function which satisfies 0 < v(0) <~ 

v(~) ~< k(1 + I~1). 
Let {Z,}n~0 be independent  r andom variables on a probabi l i ty  triple 

(fl, B, P)  with the c o m m o n  law 

P { Z ,  ~ d~} = p(d~), n = O, 1, 2,... 

Let {e,}, ~> 1 be r andom variables condit ionally independent  of  {Zn}, >~ o with 
the condit ional law 

P{e, > t]Zo,Zz, . . . }  = e-t~z,-1 ~, t > 0, n = 1,2 .... 

Define To = 0, T, = el + ... + e , ,  n 1> 1. Finally, define 

{ : ( t ) = Z , - 1 ,  T,_I  < ~ t < T , ,  n =  1,2 .... 

{~(t), t >/ 0} is a conservative regular step M a r k o v  process. C5~ Let  ~ ;  = 
~(~(s): s ~ t). 

Now let k(~, ~) be a Borel function on R x R. We define a multiplicative 
functional by the formula  

re(t) -= ~-~' k(~(s-),  ~(s)) (4) 
s ~ t  

where the product  is over  all those s = Tj ~< t. With the same nota t ion  for  
sums we have the following result. 

Lemma 1. re(t) satisfies the linear stochastic equation 

re(t) = 1 + ~ '  m(s-)[k(~(s-) ,  ~ ( s ) ) -  l] (5) 
s : ~ t  
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Proof. Clearly t-->-m(t) is piecewise constant; but m ( s ) -  m ( s - ) =  
rn(s-)[k(r  r - 1]. We sum this equation over the jump times s ~< t to 
arrive at (5). �9 

Now l e t f ( t ,  x ,  ~) be a function on R + • R • R which is differentiable in 
(t, x). Let 

Y(t )  = f  T -  t, x - ~(s) ds, ~(t) , 0 <~ t <~ T (6) 

Lemma 2. Y(t )  satisfies the stochastic equation 

( fo ) Y( t )  = Y(O) - (ft  + ~'Ix) T - s, x - ~(u) du, ~(s) ds 

+ ~ '  [r(s) - r(s-)] (7) 
s < t  

Proof. t ~ Y( t )  is of class C 1 except for t = T s. Thus, 

fldYds r ( t )  = Y(o) + as + [ r ( s ) -  Y(s-)] 
s-<t  

But d Y / d s  = - ( f t  + ~'fx).  The result is now immediate. �9 
In order to represent the product rn(t) Y( t )  in the desired form, we first 

prove a general formula for product differentiation, which corresponds to a 
known result (see Th6oreme 2, p. 106, Ref. 6). Let c~ be the class of  all right 
continuous functions t -+ x( t )  which are piecewise C 1 except for simple dis- 
continuities at the points t = Tj. Assume that 

x ( t )  = x (o)  + Fo(s) ds + F.(s) 
s ~ t  

s Y(t)  = Y(o) + at(s) ds + "2,' ad(s) 

where Fo, G~ are integrable on [0, t]. 

L e H a  3. The product X Y  �9 ~ and 

I: 
x ( t )  Y(t)  = x (o)  Y(O) + X(s)ac(s) ds + Y(s)Fc(s) ds 

+ ~ '  {X(s - )a . ( s )  + Y(s-)F.(s)  + F~(s)a.(s)) 
s ~ t  

Proof. I f  t is not a discontinuity point, then X Y  is differentiable and 

( d / d t ) ( x r )  = X ( t ) a c ( t )  + Y(t)Fc(t)  
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XY( t )  - XY ( t - )  = X(t-)Ga(t) + Y(t-)Fa(t) + Fa(t)Ga(t) 

But 

x r ( , )  - x Y ( o )  = ( x r )  ds 

The result clearly follows. �9 

+ ~ '  [(xY)(~) - ( x y ) ( s - ) ]  
s < t  

We apply this result to the case X(t) = m(t), Y(t) = f ( T -  t, x - 
f~o ~(s) ds, ~(t)). After a few manipulations Lemma 3 gives 

f2 X(t) Y(t) = f(T,  x, ~) - m(s)(f  + ~.fx) ds 

+ ~ '  m(s-)[k(~(s-), ~(s))f(f(s)) - f(se(s-)] (8) 

In order to replace this last sum by an integral, we invoke the following lemma, 
which is a special case of the L6vy system of Watanabe, (~) applied to the 
Markov process {~:(t), t >/ 0}. 

Lemma 4. l f  q~(~, 7) is a bounded Borel funetion on R x R, then 

E~(s~ '  ~o(~(s-). ~(s))) = E~fj  ~b(,(s))v(,(s))ds (9, 

where ~b(~) = ~n cp((, ,)p(d•). 

Proof The Laplace transform of the left member is 

fo ~ e-~tEr ~' q~(~(s-). ,(s))) dt 

f /  (~2 ) = Er e -"t q~(f(s-), ~(s))dNs dt 

1 r~~ 
= : E~J ~ e-"'rp(~(s-), ~(s)) dN~ 

= Er ~ ( Z . _ ~ )  + ~(Z._0  ~ + ~(Z0)J 

where we have used the conditional distribution of T, + ~ with respect to 
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{Zo,Z1  .... }. On the other hand, the Laplace t ransform of  the r ight-hand 
m e m b e r  is 

f o  e-atE~(f~ r ds) dt 

1 (fo | ~b(~()) (~()) ds} = -  E~ s v s e -as 

m - -  E ~  n - 1  v n - 1  
O; 

1 E~ r  
= = _, .-~ ~ + v ( z . _ l )  ~ + v(Zo)J [ ]  

In the following, let 

z,o = ~ ~(~:(s-), ~:(s)), w,~ = r as 
s ~ t  

where ~h(() = f q~(~, n)p(dT). Here  Zt ~ and Wt ~ are both additive functionals o f  
{f(t), t /> 0} and by L e m m a  4, the difference has mean  zero. Hence  
{Zt ~ - Wt ~, ~ }  is a mart ingale  if ~o is bounded.  

L e m m a  5. Let ~o be an arbitrary Borel function such that r is defined. 
Then { Z~ ~ - W~ ~, o~} is a local martingale. 

Proof. We must  show that  there exists {rm} , a n  increasing sequence of  
s topping times for  {~t, t >/ 0}, such that  if A e ~ ,  then Er - Wt ̂ ~; A} 
= 0 for  s < t. In order  to prove  this, let ~ , ( ( ,  7) = ~(f ,  7) where I~[ ~< n and 
zero otherwise. Then ~,  is a bounded  function and hence Z f -  - W~~ is a true 
martingale.  I f  we stop this mart ingale  at 7 m ~-~ inf{t > 0: I~o(~:(t-), ~:(t)) l > m}, 
we have 

F4Z:'A~ - W~,~;  A} = 0 

I f  we let n---> oo and use the dominated  convergence theorem,  the result 
follows. [ ]  

We are now in a posit ion to state and prove  the main  result. Fo r  nota-  
t ional simplicity, define the Bol tzmann generator  

Lf(x, ~) = - ~.fx + f~ [k(s e, 7)f(x, 7) - f (x ,  f)]p(d7) 

Theorem. Let f(t ,  x, ~) be a Borel function which is differentiable in the 
pair (t, x) with f/k(~:, 7)f(t ,  x, 7)lp(dT) < oo. Then 

m( t ) f (T  - t, X - fo' e(s) ds, e(t) ) 

- L f ) ( r - s , x -  i ' , ( u ) d u ,  , ( s ) )]ds  

is a local martingale. 
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Proof. By Lemma 3, Equat ion (8), we have 

f2 m(O g( t )  = f ( t ,  x,  ~) - m(s)(f~ + ~.fx) ds 

+ ~.  m(s- )[k(~(s - ) ,  ~(s))f(~(s)) - f(~:(s-))] 
s < t  

The last sum is of  the form ~ s ~  m(s-)~o(~(s-), ~(s)). By Lemma 5, 

f; ~(~(s-) ,  ~(s)) = r as + M~ 
s < t  

where {m~, o~tt} is a local martingale and ~b(~) = f [k(~:, ~7)f(~/) - f(~)]p(d~). 
Hence 

m(s-)[k(~(s- ) ,  ~(s)f(~(s)) - f ( ~ ( s - ) )  
s .< t 

= m(s)~b(~(s))v(~(s)) ds + m ( s - )  dM~ 

where the last term is again a local martingale. Thus we have 

( fo ) re(t) g( t )  = Y(O) + m ( s ) [ - f t  + Lf] T - s, x - ~(u) du, ~(s) ds 

j" + m ( s - )  dM~ 
0 

The theorem is now proved. 
In order to make connection with the representation (2), le t f ( t ,  x, ~:) be a 

solution of  the linearized Boltzmann equation ft = Lf. Then we see that  
m ( t ) f ( T  - t, x - fto ~(s) ds, ~(t)) is a local martingale. Let {~-~} be an in- 
creasing sequence of  stopping times with lim,~| % = 0% such that the 
process stopped at t /x r ,  is a true martingale. Taking expectations gives the 
representation (2). 

3. C O N C L U D I N G  R E M A R K S  

(a) Let  us consider the special case v(~) ~ 1, p(d6:) = (2~-)- m2 e x p ( -  ] ~12/2) 

k(t:, w) -- 1 + ~:',7 + (l~:l z - N)(I•[ z - N ) / 2 N  

Then the right-hand side of  (1) is in the form - I  + P, where I is the identity 
operator  and P is the orthogonal  projection onto the subspace of  L2(R N, p(d~)) 
spanned by {1, ~, 1~:[2). This is the Krook model of  the Boltzmann equation. 
For  this case it is known that  ~4~ E{[m(t)[} < oo and hence (3) holds. 



Stochastic Solution of the Linearized Boltzmann Equation 195 

(b) I f  {v(~:), k(~:, V)} corresponds to a cutoff hard potential, it is known r 
that  the initial value problem (1) is well posed in ~-2(R2N, p(d~)'dx). The 
solution is given by a contraction semigroup in this Hilbert space. But it does 
not follow from this that the representation (3) is absolutely convergent. 

(c) Consider the linearized Boltzmann equationft  + s r = Qfwhere  Q 
corresponds to a power law potential without cutoff C8~ (e.g., Maxwellian gas). 
In this case we have not been able to formulate the stochastic solution. Of  
course, the solution can be obtained as a limit of(2) when the cutoff parameter 
converges to zero. 

(d) For  the nonlinear Boltzmann equation without streaming terms 
ft = B( f , f ) ,  Tanaka ~9~ has formulated the stochastic solution in terms of  a 
stochastic integral equation for a discontinuous Markov process. This applies 
to the case of  a Maxwellian gas. But this work does not seem to generalize to 
the nonlinear Boltzmann equation with the streaming term ~:'fx. 

4. A P P E N D I X  ON P R O B A B I L I S T I C  N O T I O N S  

In this section we give a brief review of the probabilistic notions used in 
the main body of this paper. 

A regular step Markov process on R 8 is a stochastic process {X(t), t /> 0} 
constructed from a pair (~, Q) where ;~ is a nonnegative Borel function on R s 
and Q(x, .) is a probability measure on the Borel subsets of  R a. We define 

x ( t )  = z .  ( . .  <~ t < ~.+1) 

where {Z,,  r,},~> 0 is a discrete sequence of random variables with the joint law 

P{Z,+I EAIZo ..... Z,} = Q ( Z , , A )  (n = O, 1 .... ) 

P{r ,+I  - ~'n > t l z l ,Z1 ..... "r,,Zn} = e-t~(z, ~ (n = O, 1 .... ) 

with Zo = 0, Z0 = x e  R s. I f  ~(x) ~< const, then it can be shown r that 
lira, ~-, = + oo and thus X(t)  is defined for all t /> 0. In this case we say that 
the Markov process is conservative. 

A multiplicative functional of {X(t), t >/ 0} is a real-valued stochastic 
process {m(t), t /> 0} which satisfies 

m(t) ~ ~{X(s) ;  s ~< t} 

m(t + s) = m(t)m+(s) (m+(s, w) - re(s, Otw)) 

t--+ m(t) is right continuous, a.s. 

m(0) = 1 

A wide class of multiplicative functionals can be defined by the formula 

m(t) = [ ~  B(X( , j_O,  X(-:~))] exp[f~ A(X(s))ds] 
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where A is a Borel function on R 3 and B is a Borel function on R 3 • R 3 which 
can be supposed to satisfy B(x, x) = 1. 

A martingale is a real-valued stochastic process { Y(t) ,  t >i 0} which 
satisfies 

Y(t)  ~ ~ ( X ( s )  : s ~ t}  

e { r ( t  + s ) lX(u) :u  ~ t) = r ( t )  

It  follows that  if T is any stopping time (a nonnegative r andom variable with 
(w: T(w) < t) ~ g{X(s )  : s ~< t}) then E Y ( T )  = EY(O). 

Examples o f  martingales: I f  f (x, t) is a bounded solution o f  the integro- 
differential equation 

~ ( t , X )  = )t(x) f~3 Q(x, dy)[ f (y)  - f (x) ]  (A.1) 

t h e n f ( h  - t, X( t ) )  is a martingale, 0 ~< t ~< q .  

A local martingale is a real-valued stochastic process { Y(t) ,  t >1 0} which 
has the following property:  there exists an increasing sequence o f  stopping 
times Tm with limm T m =  + • such that  Y(t  /x Tm) is a uniformly integrable 
martingale. 

Example: I f f ( x ,  t) is an unbounded  solution o f  equation (A.1), then 
f ( t l  - t, X( t ) )  is a local martingale. 
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